Molecular determinants for the strictly compartmentalized expression of kainate receptors in CA3 pyramidal cells
نویسندگان
چکیده
Distinct subtypes of ionotropic glutamate receptors can segregate to specific synaptic inputs in a given neuron. Using functional mapping by focal glutamate uncaging in CA3 pyramidal cells (PCs), we observe that kainate receptors (KARs) are strictly confined to the postsynaptic elements of mossy fibre (mf) synapses and excluded from other glutamatergic inputs and from extrasynaptic compartments. By molecular replacement in organotypic slices from GluK2 knockout mice, we show that the faithful rescue of KAR segregation at mf-CA3 synapses critically depends on the amount of GluK2a cDNA transfected and on a sequence in the GluK2a C-terminal domain responsible for interaction with N-cadherin. Targeted deletion of N-cadherin in CA3 PCs greatly reduces KAR content in thorny excrescences and KAR-EPSCs at mf-CA3 synapses. Hence, multiple mechanisms combine to confine KARs at mf-CA3 synapses, including a stringent control of the amount of GluK2 subunit in CA3 PCs and the recruitment/stabilization of KARs by N-cadherins.
منابع مشابه
Ablation of NMDA Receptors Enhances the Excitability of Hippocampal CA3 Neurons
Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day ...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملStatus epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats.
In adult rats, kainic acid induces status epilepticus and delayed, selective cell loss of pyramidal neurons in the hippocampal CA3. In pup rats, kainate induces status epilepticus but not the accompanying neuronal cell death. The precise mechanisms underlying this age-dependent vulnerability to seizure-induced cell death are not understood. Metabotropic glutamate receptors (mGluRs) are developm...
متن کاملEthanol inhibition of synaptically evoked kainate responses in rat hippocampal CA3 pyramidal neurons.
Many studies have demonstrated that intoxicating concentrations of ethanol (10-100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated by N-methyl-D-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate ...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016